Una recent investigació sobre transport electrònic en materials de baixa dimensió (2D o 1D), com el grafè o els nanotubs de carboni, reflecteix el gran potencial d'aquests materials per revelar una comprensió més profunda de les lleis que governen el comportament emergent, a vegades sorprenent, dels electrons. Els científics han investigat materials nous com aquests, per descobrir la física de la superconductivitat topològica i els aïllants topològics. Però un dels majors reptes als quals s'enfronten els investigadors en l'estudi de materials reals és la presència d'impureses no controlades que influeixen en el transport electrònic.
Una manera d'evitar aquest problema, és estudiar els mateixos tipus de fenòmens físics en materials artificials que no tenen imperfeccions naturals. En les últimes dècades, els investigadors han utilitzat àtoms neutres que es mouen en cristalls prístins formats per llum làser per fer simulacions quàntiques per observar efectes físics que serien difícils de veure en materials electrònics reals.
Ara, els científics de la Universitat d'Illinois a Urbana-Champaign, que utilitzen una innovadora tècnica de simulació quàntica, han fet una de les primeres observacions d'un límit de mobilitat en un sistema de baixa dimensió. El professor de física, Bryce Gadway i l'estudiant de postgrau Fangzhao Alex An, van poder combinar un material virtual desordenat, en aquest cas un parell de cadenes 1D acoblades amb camps magnètics artificials per explorar aquest fenomen.
El camp magnètic artificial que s'ha dissenyat, fa que els àtoms neutres de l'experiment es comportin com electrons en camps magnètics extremadament grans, equivalents a aplicar centenars d'imants a nivell de Tesla. Es va poder variar la força del camp magnètic artificial sintonitzant les propietats dels àtoms i modificant fortament el límit de la mobilitat observada.
Llavors, què és exactament un límit de mobilitat? Es tracta d'una transició aïllant-a-conductor que depèn de l'energia que es produeix en sistemes desordenats: un règim de transport metàl·lic que sorgeix d'un aïllant especial, anomenat aïllant d'Anderson. Només dos grups han observat un avantatge de mobilitat en les 3-D. Aquest fenomen és induït per un desordre i, d'acord amb les lleis de la física de localització, un límit de mobilitat, i molt menys qualsevol tipus de comportament metàl·lic, no s'hauria de produir en materials 2D o 1D.
Aquesta observació és veritablement ressenyable: aquest tipus de comportament no s'hauria de produir en sistemes de dimensió inferior amb trastorn aleatori. Hi ha una subtilesa per adonar-se en una o dues dimensions que es basa en una mena de trastorn pseudoaleatori. Les correlacions en el trastorn dissenyat, poden permetre la transició d'un aïllant metàl·lic.
El tipus de trastorn correlacionat utilitzat té algunes propietats molt divertides. En particular, hi ha un subtil argument matemàtic que mostra que la transició d'aïllant-metàl·lic que permet és totalment independent de l'energia. Per permetre que sorgeixi un límit de mobilitat, l'ingredient addicional va ser gràcies a la creació de grans camps magnètics.
En aquesta investigació, els científics també van mostrar evidències d'un tipus d'avantguarda encara més intrigant que es va produir en absència dels camps magnètics artificials. Aquest segon tipus de límit de mobilitat es va produir a causa de les interaccions atòmic-àtom, el que va fer que els estats d'energia més alta es comportessin més fortament com un metall i els estats d'energia més baixa per comportar-se amb més força, com un aïllant.
Font: Universitat d'Illinois a Urbana-Champaign
Es mostren els missatges amb l'etiqueta de comentaris nanotubs. Mostrar tots els missatges
Es mostren els missatges amb l'etiqueta de comentaris nanotubs. Mostrar tots els missatges
dijous, 20 de setembre del 2018
dimecres, 31 de gener del 2018
Com optimitzar amb nanomaterials els càtodes de piles de combustible
Els nanotubs de carboni dopats amb nitrogen o els nanoribbons de grafè modificat poden ser substitucions adequades al platí per a una reducció ràpida de l'oxigen, la reacció clau en les piles de combustible que transformen l'energia química en electricitat, segons investigadors de la Universitat de Rice.
Les troballes són de simulacions per computadora dels científics de la Universitat de Rice que es van proposar com es poden millorar els nanomaterials de carboni per als càtodes de piles de combustible. El seu estudi revela els mecanismes a nivell d'àtom mitjançant els quals els nanomaterials dopats catalitzen reaccions de reducció d'oxigen (ORR).
La investigació apareix a la revista Royal Society of Chemistry Nanoscale
El físic teòric Boris Yakobson i els seus col·legues de la Universitat de Rice, estan entre molts altres, a la recerca d'una forma d'accelerar l'ORR de les piles de combustible, que es van descobrir al segle XIX, però que no es van utilitzar fins a la darrera part del XX. Des de llavors han alimentat els modes de transport que van des d'automòbils i autobusos fins a naus espacials.
Els investigadors de Rice, incloent l'autor principal i l'antic associat postdoctoral Xiaolong Zou i l'estudiant de postgrau Luqing Wang, van utilitzar simulacions informàtiques per descobrir per què els nanoribbons de grafè i els nanotubs de carboni modificats amb nitrogen i / o bor, llargament estudiats com a substitut del caríssim platí, són tan lents i com es poden millorar.
El dopatge o modificació química, els nanotubs conductors o els nanoribbons canvien les seves característiques d'unió química. Poden ser utilitzats com a càtodes en piles de combustible de membrana d'intercanvi de protons. En una pila de combustible senzilla, els ànodes extreuen combustible d'hidrogen i el separen en protons i electrons. Mentre els electrons negatius es despleguen com a corrent utilitzable, els protons positius es dibuixen cap al càtode, on es recombinen amb els electrons i l'oxigen per produir aigua.
Els models van mostrar que els nanotubs de carboni més prims amb una concentració relativament alta de nitrogen funcionarien millor, ja que els àtoms d'oxigen es connecten fàcilment amb l'àtom de carboni més proper al nitrogen. Els nanotubs tenen un avantatge sobre els nanoribbons a causa de la seva curvatura, que distorsiona els enllaços químics al voltant de la seva circumferència i condueix a una unió més fàcil, segons van trobar els investigadors.
No és complicat fer un catalitzador que no sigui massa fort ni massa feble ja que es vincula amb l'oxigen. La corba del nanotub modifica l'energia vinculant dels nanotubs, segons els investigadors, que van determinar que els nanotubs ultratils amb un radi entre 7 i 10 angstroms serien ideals. (Un angstrom és una deu mil milions d'un metre, per a la comparació, un àtom típic té aproximadament 1 angstrom de diàmetre).
També van demostrar que els nanoribbons de grafè co-dopat amb nitrogen i el boró, milloren les capacitats d'absorció d'oxigen de les cintes amb vores en zig-zag. En aquest cas, l'oxigen troba una oportunitat de doble enllaç. En primer lloc, s'adhereixen directament als llocs dopats amb càrrega positiva. En segon lloc, estan dibuixats per àtoms de carboni amb càrrega d'espín elevada, que interactúa amb els orbitals electrònics polaritzats per spins d'oxigen. Tot i que l'efecte spin millora l'adsorció, l'energia d'enquadernació continua sent feble, a més d'aconseguir un equilibri que permeti un bon rendiment catalític.
Els investigadors van mostrar els mateixos principis catalítics, però amb menys efecte, per nanoribbons.
Font: Universitat de Rice
Les troballes són de simulacions per computadora dels científics de la Universitat de Rice que es van proposar com es poden millorar els nanomaterials de carboni per als càtodes de piles de combustible. El seu estudi revela els mecanismes a nivell d'àtom mitjançant els quals els nanomaterials dopats catalitzen reaccions de reducció d'oxigen (ORR).
La investigació apareix a la revista Royal Society of Chemistry Nanoscale
El físic teòric Boris Yakobson i els seus col·legues de la Universitat de Rice, estan entre molts altres, a la recerca d'una forma d'accelerar l'ORR de les piles de combustible, que es van descobrir al segle XIX, però que no es van utilitzar fins a la darrera part del XX. Des de llavors han alimentat els modes de transport que van des d'automòbils i autobusos fins a naus espacials.
Els investigadors de Rice, incloent l'autor principal i l'antic associat postdoctoral Xiaolong Zou i l'estudiant de postgrau Luqing Wang, van utilitzar simulacions informàtiques per descobrir per què els nanoribbons de grafè i els nanotubs de carboni modificats amb nitrogen i / o bor, llargament estudiats com a substitut del caríssim platí, són tan lents i com es poden millorar.
El dopatge o modificació química, els nanotubs conductors o els nanoribbons canvien les seves característiques d'unió química. Poden ser utilitzats com a càtodes en piles de combustible de membrana d'intercanvi de protons. En una pila de combustible senzilla, els ànodes extreuen combustible d'hidrogen i el separen en protons i electrons. Mentre els electrons negatius es despleguen com a corrent utilitzable, els protons positius es dibuixen cap al càtode, on es recombinen amb els electrons i l'oxigen per produir aigua.
Els models van mostrar que els nanotubs de carboni més prims amb una concentració relativament alta de nitrogen funcionarien millor, ja que els àtoms d'oxigen es connecten fàcilment amb l'àtom de carboni més proper al nitrogen. Els nanotubs tenen un avantatge sobre els nanoribbons a causa de la seva curvatura, que distorsiona els enllaços químics al voltant de la seva circumferència i condueix a una unió més fàcil, segons van trobar els investigadors.
No és complicat fer un catalitzador que no sigui massa fort ni massa feble ja que es vincula amb l'oxigen. La corba del nanotub modifica l'energia vinculant dels nanotubs, segons els investigadors, que van determinar que els nanotubs ultratils amb un radi entre 7 i 10 angstroms serien ideals. (Un angstrom és una deu mil milions d'un metre, per a la comparació, un àtom típic té aproximadament 1 angstrom de diàmetre).
També van demostrar que els nanoribbons de grafè co-dopat amb nitrogen i el boró, milloren les capacitats d'absorció d'oxigen de les cintes amb vores en zig-zag. En aquest cas, l'oxigen troba una oportunitat de doble enllaç. En primer lloc, s'adhereixen directament als llocs dopats amb càrrega positiva. En segon lloc, estan dibuixats per àtoms de carboni amb càrrega d'espín elevada, que interactúa amb els orbitals electrònics polaritzats per spins d'oxigen. Tot i que l'efecte spin millora l'adsorció, l'energia d'enquadernació continua sent feble, a més d'aconseguir un equilibri que permeti un bon rendiment catalític.
Els investigadors van mostrar els mateixos principis catalítics, però amb menys efecte, per nanoribbons.
Font: Universitat de Rice
Etiquetes de comentaris:
grafè,
nanomaterials,
nanoribbons,
nanotubs
Ubicació:
Granollers, Barcelona, Espanya
dimarts, 27 de juny del 2017
Nou estat de l'aigua: líquid de baixa densitat a baixes temperatures
L'aigua és la substància més abundant de la Terra i, tot i així, seguim sense comprendre del tot el seu funcionament. Un equip de la Universitat de Nebraska creu haver trobat un dels sants greals de l'aigua. Es tracta d'un estat líquid en el qual l'aigua presenta una densitat inferior a la normal.
Aquest estat es ve sospitant des dels anys 90, però fins ara no s'havia trobat un mètode que pogués demostrar-ho. El que ha aconseguit aquest grup de químics de Nebraska és precisament desenvolupar una simulació que, en teoria, permetria convertir l'aigua a aquest estat.
El descobriment té a veure amb l'equilibri entre temperatura i pressió, i s'ha arribat a ell per accident. L'objectiu original dels científics era tractar de determinar a quina temperatura l'aigua es congela formant nanotubs de gel.
En el seu lloc han trobat que l'aigua es comporta de manera mai vista. Si tanquem molècules d'aigua en un nanotub de carboni i reduïm la temperatura a -42 graus celsius constants, l'aigua es congela. No obstant això, poc després canvia d'estat i es converteix en un líquid de baixa densitat abans de congelar-se de nou per formar un nanotub hexagonal de gel. "El gel es fon i es reforma de nou. Era una cosa que no esperàvem veure", explica el professor de química Yet Zeng, un dels autors de l'estudi.
Per descomptat, parlem d'una simulació computeritzada. El següent pas és confirmar aquest nou estat de la matèria de l'aigua portant la simulació a la pràctica. Una cosa que és possible en els laboratoris actuals.
Font: Phys.org
Aquest estat es ve sospitant des dels anys 90, però fins ara no s'havia trobat un mètode que pogués demostrar-ho. El que ha aconseguit aquest grup de químics de Nebraska és precisament desenvolupar una simulació que, en teoria, permetria convertir l'aigua a aquest estat.
El descobriment té a veure amb l'equilibri entre temperatura i pressió, i s'ha arribat a ell per accident. L'objectiu original dels científics era tractar de determinar a quina temperatura l'aigua es congela formant nanotubs de gel.
En el seu lloc han trobat que l'aigua es comporta de manera mai vista. Si tanquem molècules d'aigua en un nanotub de carboni i reduïm la temperatura a -42 graus celsius constants, l'aigua es congela. No obstant això, poc després canvia d'estat i es converteix en un líquid de baixa densitat abans de congelar-se de nou per formar un nanotub hexagonal de gel. "El gel es fon i es reforma de nou. Era una cosa que no esperàvem veure", explica el professor de química Yet Zeng, un dels autors de l'estudi.
Per descomptat, parlem d'una simulació computeritzada. El següent pas és confirmar aquest nou estat de la matèria de l'aigua portant la simulació a la pràctica. Una cosa que és possible en els laboratoris actuals.
Font: Phys.org
Ubicació:
Granollers, Barcelona, Espanya
Subscriure's a:
Missatges (Atom)